Tuesday, March 21, 2017

Kalor Pelarutan dan Kalor Pengenceran

7. Kalor Pelarutan dan Kalor Pengenceran

Meskipun kita telah berfokus sejauh pada efek energi termal/termis yang dihasilkan dari reaksi kimia, sebagian proses fisika, seperti mencairnya es atau kondensasi uap, juga melibatkan penyerapan atau pelepasan kalor. Perubahan entalpi terjadi juga ketika suatu zat terlarut larut dalam pelarut atau ketika larutan diencerkan. Mari kita lihat dua proses fisika terkait dengan ini, yang melibatkan kalor pelarutan dan kalor pengenceran.

Dalam sebagian besar kasus, melarutkan zat terlarut dalam pelarut menghasilkan perubahan kalor yang dapat diukur. Pada tekanan tetap, perubahan kalor adalah sama dengan perubahan entalpi. Kalor dari pelarutan, atau entalpi pelarutan (ΔHlar) adalah kalor yang dihasilkan atau diserap ketika sejumlah zat terlarut larut dalam sejumlah pelarut. Kuantitas ΔHlar merupakan selisih antara entalpi larutan akhir dan entalpi komponen awal (yaitu, zat terlarut dan pelarut) sebelum dicampur. Sehingga,

ΔHlar Hlar - Hkomp

Baik Hlar atau Hkomp (komponen) tidak dapat diukur, tetapi perbedaannya (ΔHlar) dapat segera ditentukan dalam kalorimeter tekanan tetap. Seperti perubahan entalpi lainnya, ΔHlar positif untuk proses endotermis (menyerap kalor) dan negatif untuk proses eksotermis (melepas kalor).

Gambar 11 Proses pelarutan NaCl. Proses ini dapat dianggap terjadi dalam dua langkah yang terpisah: (1) pemisahan ion dari keadaan kristal menjadi gas dan (2) hidrasi ion gas. Kalor pelarutan adalah sama dengan perubahan energi untuk dua langkah ini, ΔHlar = U  ΔHhidr.

Pertimbangkan kalor pelarutan dari sebuah proses di mana sebuah senyawa ionik adalah zat terlarut dan air adalah pelarut. Misalnya, apa yang terjadi ketika padatan NaCl larut dalam air? Dalam NaCl padat, ion-ion Na+ dan Cl- berikatan bersama oleh gaya (elektrostatik) positif-negatif, tetapi ketika kristal kecil NaCl larut dalam air, jaringan tiga dimensi dari ion terurai menjadi satuan individu. (Struktur NaCl padat ditunjukkan pada Gambar 11). Pemisahan ion Na+ dan Cl- distabilkan dalam larutan oleh interaksi ion-ion dengan molekul air (lihat Gambar 12). Ion ini dikatakan terhidrasi. Dalam air hal ini memainkan peran mirip dengan isolator listrik yang baik. molekul air melindungi ion (Na+ dan Cl-) dari satu sama lain dan secara efektif mengurangi daya tarik elektrostatik yang menahan keduanya saat dalam keadaan padat. Kalor dari larutan didefinisikan oleh proses berikut:

NaCl(s) + H2O(l) à Na+(aq) + Cl-(aq)  ΔHlar =?

Gambar 12. Hidrasi ion Na+ dan Cl-

Melarutkan senyawa ionik seperti NaCl dalam air melibatkan interaksi kompleks antara zat terlarut dan spesies pelarut. Namun, untuk tujuan analisis kita dapat membayangkan bahwa proses pelarutan berlangsung dalam dua langkah terpisah, diilustrasikan pada Gambar 11. Pertama, ion Na+ dan Cl- dalam kristal padat dipisahkan dari satu sama lain dan diubah menjadi gas:

energi + NaCl(s) à Na+(g) + Cl-(g)

Energi yang dibutuhkan untuk sepenuhnya memisahkan satu mol senyawa ionik padat menjadi ion-ion gas disebut energi kisi (U). Energi kisi NaCl adalah 788 kJ/mol. Dengan kata lain, kita perlu untuk memasok 788 kJ energi untuk memecah 1 mol NaCl padat menjadi 1 mol ion Na+ dan 1 mol ion Clgas.

Selanjutnya, ion "gas" Na+ dan Cl- masuk ke air dan menjadi terhidrasi:

Na+(g) + Cl-(g) + H2O(l) à Na+(aq) + Cl-(aq) + energi

Perubahan entalpi yang berhubungan dengan proses hidrasi disebut kalor hidrasi, ΔHhidr (kalor hidrasi adalah kuantitas negatif untuk kation dan anion). Menerapkan hukum Hess, adalah mungkin untuk mempertimbangkan ΔHlar sebagai jumlah dari dua kuantitas terkait, energi kisi (U) dan kalor hidrasi (ΔHhidr), seperti yang ditunjukkan pada Gambar 11:

ΔHlar = U + ΔHhidr

sehingga

NaCl(s) à Na+(g) + Cl-(g)                                       U = 788kJ/mol
Na+(g) + Cl-(g) + H2O(l) à Na+(aq) + Cl-(aq)    ΔHhidr = -784kJ/mol
____________________________________________________________+
NaCl(s) + H2O(l) à Na+(aq) + Cl-(aq)                 ΔHlar = 4kJ/mol


Jadi, ketika 1 mol NaCl dilarutkan dalam air, 4 kJ kalor akan diserap dari lingkungan. Kita akan mengamati efek ini dengan mencatat bahwa gelas yang berisi larutan menjadi sedikit lebih dingin. Tabel 5 daftar ΔHlar dari beberapa senyawa ionik. Tergantung pada sifat dari kation dan anion yang terlibat, ΔHlar untuk senyawa ionik dapat bertanda negatif (eksotermis) atau positif (endotermis).






Kalor Pengenceran
Ketika larutan yang disiapkan sebelumnya diencerkan, yaitu, ketika pelarut berlebih ditambahkan untuk menurunkan konsentrasi keseluruhan zat terlarut, kalor biasanya dilepas atau diserap. Kalor pengenceran adalah perubahan kalor yang terkait dengan proses pengenceran. Jika proses pelarutan tertentu adalah endotermis dan larutan selanjutnya diencerkan, kalor akan diserap oleh larutan yang sama dari lingkungan. Kebalikannya berlaku untuk larutan eksotermis kalor akan dibebaskan jika pelarut berlebih ditambahkan untuk mengencerkan larutan. Oleh karena itu, selalu berhati-hati ketika bekerja pada prosedur pengenceran di laboratorium. Karena kalor pengenceran yang sangat eksotermik, asam sulfat (H2SO4) pekat menimbulkan masalah sangat berbahaya jika konsentrasinya harus dikurangi dengan mencampurnya dengan air tambahan. H2SO4 pekat terdiri dari 98 persen asam dan 2 persen air berdasarkan massa. Mencampurnya dengan air melepaskan sejumlah besar kalor ke lingkungan. Proses ini sangat eksotermis bahwa kita tidak harus mencoba untuk mengencerkan asam pekat dengan menambahkan air untuk itu. Kalor yang dihasilkan bisa menyebabkan larutan asam mendidih dan memercikan larutan. Prosedur yang direkomendasikan adalah dengan menambahkan asam pekat perlahan (bisa melalui dinding tabung/gelas tetes demi tetes) ke air (sambil terus diaduk).


<<<6                                                            >>>


0 komentar:

Post a Comment